# Spectra of computable models of strongly minimal disintegrated theories

Steffen Lempp, University of Wisconsin-Madison

http://www.math.wisc.edu/~lempp

(Joint work with Uri Andrews)

June 22, 2019

# Spectra of computable models of strongly minimal disintegrated theories

Steffen Lempp, University of Wisconsin-Madison

http://www.math.wisc.edu/~lempp

(Joint work with Uri Andrews)

June 22, 2019 (9:20 p.m. Nur-Sultan time)

#### Introduction

Spectra of Computable Models: Upper Bounds Spectra of Computable Models: Previously Known Examples

Throughout this talk, we work in a countable (computable) relational first-order language  $\mathcal{L}$ .

#### Introduction

Spectra of Computable Models: Upper Bounds Spectra of Computable Models: Previously Known Examples

Throughout this talk, we work in a countable (computable) relational first-order language  $\mathcal{L}$ .

Recall that an  $\mathcal{L}$ -theory is *strongly minimal* if all subsets definable (with parameters) in any of its models are finite or cofinite, and that any strongly minimal theory is  $\aleph_1$ -categorical.

Throughout this talk, we work in a countable (computable) relational first-order language  $\mathcal{L}$ .

Recall that an  $\mathcal{L}$ -theory is *strongly minimal* if all subsets definable (with parameters) in any of its models are finite or cofinite, and that any strongly minimal theory is  $\aleph_1$ -categorical.

A strongly minimal theory T is disintegrated if for all  $\mathcal{M} \models T$  and all  $A \subseteq M$ ,

$$\operatorname{acl}(A) = \bigcup_{a \in A} \operatorname{acl}(\{a\})$$

Throughout this talk, we work in a countable (computable) relational first-order language  $\mathcal{L}$ .

Recall that an  $\mathcal{L}$ -theory is *strongly minimal* if all subsets definable (with parameters) in any of its models are finite or cofinite, and that any strongly minimal theory is  $\aleph_1$ -categorical.

A strongly minimal theory T is disintegrated if for all  $\mathcal{M} \models T$  and all  $A \subseteq M$ ,

$$\operatorname{acl}(A) = \bigcup_{a \in A} \operatorname{acl}(\{a\})$$

Zil'ber's Conjecture (1970's) stated that any strong minimal theory is either disintegrated, essentially that of a vector space, or bi-interpretable with an algebraically closed field. (We call such theories *trichotomous*.)

Throughout this talk, we work in a countable (computable) relational first-order language  $\mathcal{L}$ .

Recall that an  $\mathcal{L}$ -theory is *strongly minimal* if all subsets definable (with parameters) in any of its models are finite or cofinite, and that any strongly minimal theory is  $\aleph_1$ -categorical.

A strongly minimal theory T is disintegrated if for all  $\mathcal{M} \models T$  and all  $A \subseteq M$ ,

$$\operatorname{acl}(A) = \bigcup_{a \in A} \operatorname{acl}(\{a\})$$

Zil'ber's Conjecture (1970's) stated that any strong minimal theory is either disintegrated, essentially that of a vector space, or bi-interpretable with an algebraically closed field. (We call such theories *trichotomous*.)

Hrushovski disproved Zil'ber's Conjecture using so-called *Hrushovski constructions* (1991) and *Hrushovski fusions* (1992).

#### Introduction

Spectra of Computable Models: Upper Bounds Spectra of Computable Models: Previously Known Examples

The following theorem will allow us to define spectra:

## Theorem (Baldwin/Lachlan 1971)

The countable models of any  $\aleph_1$ -categorical but not totally categorical theory  $\mathcal T$  in any countable language form an elementary chain

$$\mathcal{M}_0 \prec \mathcal{M}_1 \prec \ldots \prec \mathcal{M}_\omega$$

where  $\mathcal{M}_0$  is the prime model and  $\mathcal{M}_{\omega}$  is the countable saturated model of  $\mathcal{T}$ .

The following theorem will allow us to define spectra:

## Theorem (Baldwin/Lachlan 1971)

The countable models of any  $\aleph_1$ -categorical but not totally categorical theory T in any countable language form an elementary chain

$$\mathcal{M}_0 \prec \mathcal{M}_1 \prec \ldots \prec \mathcal{M}_\omega$$

where  $\mathcal{M}_0$  is the prime model and  $\mathcal{M}_{\omega}$  is the countable saturated model of T.

## Definition

The spectrum of computable models of an  $\aleph_1$ -categorical but not totally categorical theory T in any computable language is

$$SCM(T) = \{ \alpha \leq \omega \mid \mathcal{M}_{\alpha} \text{ is computable} \}.$$

The following theorem will allow us to define spectra:

## Theorem (Baldwin/Lachlan 1971)

The countable models of any  $\aleph_1$ -categorical but not totally categorical theory  $\mathcal T$  in any countable language form an elementary chain

$$\mathcal{M}_0 \prec \mathcal{M}_1 \prec \ldots \prec \mathcal{M}_\omega$$

where  $\mathcal{M}_0$  is the prime model and  $\mathcal{M}_{\omega}$  is the countable saturated model of T.

## Definition

The spectrum of computable models of an  $\aleph_1$ -categorical but not totally categorical theory T in any computable language is

$$SCM(T) = \{ \alpha \leq \omega \mid \mathcal{M}_{\alpha} \text{ is computable} \}.$$

Warning:  $\mathcal{M}_{\alpha}$  may have dimension  $k + \alpha$  for fixed k > 0.

## Theorem (Nies 1999)

Any spectrum of computable models of a strongly minimal (or indeed any  $\aleph_1$ -categorical) theory is a  $\Sigma_3^0(\emptyset^{(\omega)})$ -subset of  $[0,\omega]$ .

## Theorem (Nies 1999)

Any spectrum of computable models of a strongly minimal (or indeed any  $\aleph_1$ -categorical) theory is a  $\Sigma_3^0(\emptyset^{(\omega)})$ -subset of  $[0,\omega]$ . If T is also model complete, its spectrum is a  $\Sigma_4^0$ -set.

## Theorem (Nies 1999)

Any spectrum of computable models of a strongly minimal (or indeed any  $\aleph_1$ -categorical) theory is a  $\Sigma_3^0(\emptyset^{(\omega)})$ -subset of  $[0,\omega]$ . If T is also model complete, its spectrum is a  $\Sigma_4^0$ -set.

## Theorem (Goncharov/Harizanov/Laskowski/Lempp/McCoy 2003)

A strongly minimal disintegrated theory T is model complete in the language  $\mathcal{L}_M$  (expanded by constants for a model  $\mathcal{M}$  of T).

## Theorem (Nies 1999)

Any spectrum of computable models of a strongly minimal (or indeed any  $\aleph_1$ -categorical) theory is a  $\Sigma_3^0(\emptyset^{(\omega)})$ -subset of  $[0,\omega]$ . If T is also model complete, its spectrum is a  $\Sigma_4^0$ -set.

## Theorem (Goncharov/Harizanov/Laskowski/Lempp/McCoy 2003)

A strongly minimal disintegrated theory T is model complete in the language  $\mathcal{L}_M$  (expanded by constants for a model  $\mathcal{M}$  of T).

## Corollary

For any strongly minimal disintegrated theory T, the spectrum of T is a  $\Sigma^0_{\rm F}$ -set.

- $\emptyset$  and  $[0,\omega]$  (trivial)
- $\{0\}$  (Goncharov 1978) and [0, n] ( $n \in \omega$ , Kudaibergenov 1980)

- $\emptyset$  and  $[0,\omega]$  (trivial)
- $\{0\}$  (Goncharov 1978) and [0, n] ( $n \in \omega$ , Kudaibergenov 1980)
- $\omega$  and  $[1, \omega]$  (Khoussainov/Nies/Shore 1997)
- {1} (Nies 1999) and [1,  $\alpha$ ) ( $\alpha \le \omega$ , Hirschfeldt/Nies 1999)

- $\emptyset$  and  $[0,\omega]$  (trivial)
- $\{0\}$  (Goncharov 1978) and [0, n] ( $n \in \omega$ , Kudaibergenov 1980)
- $\omega$  and  $[1, \omega]$  (Khoussainov/Nies/Shore 1997)
- {1} (Nies 1999) and [1,  $\alpha$ ) ( $\alpha \le \omega$ , Hirschfeldt/Nies 1999)
- $\{\omega\}$  (Hirschfeldt/Khoussainov/Semukhin 2006)

- $\emptyset$  and  $[0,\omega]$  (trivial)
- $\{0\}$  (Goncharov 1978) and [0, n] ( $n \in \omega$ , Kudaibergenov 1980)
- $\omega$  and  $[1, \omega]$  (Khoussainov/Nies/Shore 1997)
- {1} (Nies 1999) and [1,  $\alpha$ ) ( $\alpha \le \omega$ , Hirschfeldt/Nies 1999)
- $\{\omega\}$  (Hirschfeldt/Khoussainov/Semukhin 2006)
- $\{0, \omega\}$  (Andrews 2011, the first known non-interval!)

The following are all previously known spectra of computable models of strongly minimal (indeed, all  $\aleph_1$ -categorical) theories:

- $\emptyset$  and  $[0,\omega]$  (trivial)
- $\{0\}$  (Goncharov 1978) and [0, n] ( $n \in \omega$ , Kudaibergenov 1980)
- $\omega$  and  $[1, \omega]$  (Khoussainov/Nies/Shore 1997)
- {1} (Nies 1999) and [1,  $\alpha$ ) ( $\alpha \le \omega$ , Hirschfeldt/Nies 1999)
- $\{\omega\}$  (Hirschfeldt/Khoussainov/Semukhin 2006)
- $\{0,\omega\}$  (Andrews 2011, the first known non-interval!)

All spectra except for the last are for a strongly minimal disintegrated theory; the last is by a Hrushovski construction.

The following are all known spectra of computable models of strongly minimal (indeed, all  $\aleph_1$ -categorical) theories in finite languages:

- $\emptyset$  and  $[0,\omega]$  (trivial)
- {0} (Herwig/Lempp/Ziegler 1999)

The following are all known spectra of computable models of strongly minimal (indeed, all  $\aleph_1$ -categorical) theories in finite languages:

- $\emptyset$  and  $[0,\omega]$  (trivial)
- {0} (Herwig/Lempp/Ziegler 1999)
- $[0, \alpha)$   $(\alpha \le \omega)$  and  $\{\omega\}$  (Andrews 2011)

The following are all known spectra of computable models of strongly minimal (indeed, all  $\aleph_1$ -categorical) theories in finite languages:

- $\emptyset$  and  $[0,\omega]$  (trivial)
- {0} (Herwig/Lempp/Ziegler 1999)
- $[0, \alpha)$   $(\alpha \le \omega)$  and  $\{\omega\}$  (Andrews 2011)

All spectra except for the last bullet are for a strongly minimal disintegrated theory; the last bullet is by Hrushovski constructions.

For strongly minimal disintegrated theories T, adding restrictions on the language yields much better results:

For strongly minimal disintegrated theories T, adding restrictions on the language yields much better results:

## Theorem (Andrews/Medvedev 2014)

If T is a strongly minimal disintegrated theory in a *finite* language  $\mathcal{L}$ , then the possible spectra of computable models are exactly  $\emptyset$ ,  $[0,\omega]$ , and  $\{0\}$ .

For strongly minimal disintegrated theories T, adding restrictions on the language yields much better results:

## Theorem (Andrews/Medvedev 2014)

If T is a strongly minimal disintegrated theory in a *finite* language  $\mathcal{L}$ , then the possible spectra of computable models are exactly  $\emptyset$ ,  $[0,\omega]$ , and  $\{0\}$ .

This shows that the Herwig/Lempp/Ziegler model was essentially the only way to construct a nontrivial spectrum for a strongly minimal disintegrated theory in a finite language.

For strongly minimal disintegrated theories T, adding restrictions on the language yields much better results:

## Theorem (Andrews/Medvedev 2014)

If T is a strongly minimal disintegrated theory in a *finite* language  $\mathcal{L}$ , then the possible spectra of computable models are exactly  $\emptyset$ ,  $[0,\omega]$ , and  $\{0\}$ .

This shows that the Herwig/Lempp/Ziegler model was essentially the only way to construct a nontrivial spectrum for a strongly minimal disintegrated theory in a finite language.

In addition to disintegrated theories, the result of Andrews/ Medvedev also extends to locally modular expansions of a group and, by Poizat (1988), to field-like theories, i.e., to "most" trichotomous theories.

For infinite languages, the situation is more difficult.

# Theorem (Andrews/Lempp)

If T is a strongly minimal disintegrated theory in a (possibly infinite) binary relational language  $\mathcal{L}$ , then the possible spectra of computable models are exactly the following seven sets:

$$\emptyset$$
, [0,  $\omega$ ], {0}, {1}, {0,1}, { $\omega}$ , and [1,  $\omega$ ].

For infinite languages, the situation is more difficult.

# Theorem (Andrews/Lempp)

If T is a strongly minimal disintegrated theory in a (possibly infinite) binary relational language  $\mathcal{L}$ , then the possible spectra of computable models are exactly the following seven sets:  $\emptyset$ ,  $[0,\omega]$ ,  $\{0\}$ ,  $\{1\}$ ,  $\{0,1\}$ ,  $\{\omega\}$ , and  $[1,\omega]$ .

Our recent work has been motivated by the following sweeping

## Conjecture

If T is a strongly minimal disintegrated theory in a (possibly infinite) relational language  $\mathcal{L}$  of arity at most n, then there are only finitely many possible spectra of computable models.

For infinite languages, the situation is more difficult.

# Theorem (Andrews/Lempp)

If T is a strongly minimal disintegrated theory in a (possibly infinite) binary relational language  $\mathcal{L}$ , then the possible spectra of computable models are exactly the following seven sets:  $\emptyset$ ,  $[0,\omega]$ ,  $\{0\}$ ,  $\{1\}$ ,  $\{0,1\}$ ,  $\{\omega\}$ , and  $[1,\omega]$ .

Our recent work has been motivated by the following sweeping

## Conjecture

If T is a strongly minimal disintegrated theory in a (possibly infinite) relational language  $\mathcal{L}$  of arity at most n, then there are only finitely many possible spectra of computable models.

The following constitutes progress toward, and is related to, this conjecture.

In a strongly minimal model  $\mathcal{M}$ , a relation  $R \subseteq M^n$ 

- has (Morley) rank 0 if R is finite (and nonempty);
- has (Morley) rank at most 1 if for any ā ∈ M<sup>n</sup> with
   M ⊨ R(ā), dim(acl(ā)) is at most 1, i.e., ā does not contain
  two mutually generic elements.

In a strongly minimal model  $\mathcal{M}$ , a relation  $R \subseteq M^n$ 

- has (Morley) rank 0 if R is finite (and nonempty);
- has (Morley) rank at most 1 if for any ā ∈ M<sup>n</sup> with
   M |= R(ā), dim(acl(ā)) is at most 1, i.e., ā does not contain two mutually generic elements.

## Theorem (Andrews/Lempp)

If T is a strongly minimal disintegrated theory in a relational language  $\mathcal L$  of bounded arity such that in each model  $\mathcal M$  of T, any relation  $R^{\mathcal M}$  has rank at most 1, then the possible spectra of computable models are exactly the following nine or ten sets:  $\emptyset$ ,  $[0,\omega]$ ,  $\{0\}$ ,  $\{1\}$ ,  $\{0,1\}$ ,  $\{\omega\}$ ,  $[1,\omega]$ ,  $\{0,\omega\}$ , and  $\{0,1,\omega\}$ , and possibly  $\{1,\omega\}$ .

In a strongly minimal model  $\mathcal{M}$ , a relation  $R \subseteq M^n$ 

- has (Morley) rank 0 if R is finite (and nonempty);
- has (Morley) rank at most 1 if for any ā ∈ M<sup>n</sup> with
   M |= R(ā), dim(acl(ā)) is at most 1, i.e., ā does not contain
  two mutually generic elements.

## Theorem (Andrews/Lempp)

If T is a strongly minimal disintegrated theory in a relational language  $\mathcal L$  of bounded arity such that in each model  $\mathcal M$  of T, any relation  $R^{\mathcal M}$  has rank at most 1, then the possible spectra of computable models are exactly the following nine or ten sets:  $\emptyset$ ,  $[0,\omega]$ ,  $\{0\}$ ,  $\{1\}$ ,  $\{0,1\}$ ,  $\{\omega\}$ ,  $[1,\omega]$ ,  $\{0,\omega\}$ , and  $\{0,1,\omega\}$ , and possibly  $\{1,\omega\}$ .

Among the two additional spectra,  $\{0,\omega\}$  was not known before to be the spectrum of a disintegrated theory; and  $\{0,1,\omega\}$  was not even known to be a spectrum at all.

The assumption of bounded arity in the previous theorem was crucial since we also have:

## Theorem (Andrews/Lempp)

If T is a strongly minimal disintegrated theory in a relational language  $\mathcal L$  (of any arity) such that in each model  $\mathcal M$  of T, any relation  $R^{\mathcal M}$  has rank at most 1, then the possible spectra of computable models are exactly the nine or ten spectra from the previous theorem as well as the sets  $[0,\alpha)$  and  $[0,\alpha)\cup\{\omega\}$  for all  $\alpha\leq\omega$ .

With a trick, we can "almost" reduce the ternary case to the rank-1 case and obtain the following

## Theorem (Andrews/Lempp)

If T is a strongly minimal disintegrated theory in a ternary relational language  $\mathcal{L}$ , then there are at least nine and at most eighteen possible spectra of computable models:

For any spectrum S,  $[3,\omega) \cap S \neq \emptyset$  implies  $[1,\omega] \subseteq S$ .

Spectra of Computable Models New Results Ingredients of the Proofs Reducing to Rank 1 Complexity of  $acl(\emptyset)$  and iacl(a) "Down" and "Up" Lemmas Wrapping Up

**Step 1:** Reduce to rank 1:

Binary  $\mathcal{L}$ : If  $\mathcal{M}_{\alpha}$  for some  $\alpha \geq 2$  is computable, then fix two mutually generic  $a, b \in \mathcal{M}_{\alpha}$ .

Reducing to Rank 1 Complexity of  $acl(\emptyset)$  and iacl(a) "Down" and "Up" Lemmas Wrapping Up

## **Step 1:** Reduce to rank 1:

Binary  $\mathcal{L}$ : If  $\mathcal{M}_{\alpha}$  for some  $\alpha \geq 2$  is computable, then fix two mutually generic  $a, b \in \mathcal{M}_{\alpha}$ .

Now  $R^{\mathcal{M}_{\alpha}}$  has rank 2 iff  $\mathcal{M}_{\alpha} \models R(a,b)$ , so in that case we (effectively in R) replace R by  $\neg R$  (which is at most rank 1).

Binary  $\mathcal{L}$ : If  $\mathcal{M}_{\alpha}$  for some  $\alpha \geq 2$  is computable, then fix two mutually generic  $a, b \in \mathcal{M}_{\alpha}$ .

Now  $R^{\mathcal{M}_{\alpha}}$  has rank 2 iff  $\mathcal{M}_{\alpha} \models R(a,b)$ , so in that case we (effectively in R) replace R by  $\neg R$  (which is at most rank 1).

Ternary  $\mathcal{L}$ : If  $\mathcal{M}_{\alpha}$  for some  $\alpha \geq 3$  is computable, then fix three mutually generic  $a,b,c\in\mathcal{M}_{\alpha}$ .

First reduce to rank at most 2 as in the binary case.

Binary  $\mathcal{L}$ : If  $\mathcal{M}_{\alpha}$  for some  $\alpha \geq 2$  is computable, then fix two mutually generic  $a, b \in M_{\alpha}$ .

Now  $R^{\mathcal{M}_{\alpha}}$  has rank 2 iff  $\mathcal{M}_{\alpha} \models R(a, b)$ , so in that case we (effectively in R) replace R by  $\neg R$  (which is at most rank 1).

Ternary  $\mathcal{L}$ : If  $\mathcal{M}_{\alpha}$  for some  $\alpha \geq 3$  is computable, then fix three mutually generic  $a,b,c\in\mathcal{M}_{\alpha}$ .

First reduce to rank at most 2 as in the binary case. Then  $\mathcal{M}_{\alpha} \models \exists^{\infty} w \, R(w,y,z)$  iff at least two of  $\mathcal{M}_{\alpha} \models R(a,y,z)$ ,  $\mathcal{M}_{\alpha} \models R(b,y,z)$ , and  $\mathcal{M}_{\alpha} \models R(c,y,z)$  hold,

Binary  $\mathcal{L}$ : If  $\mathcal{M}_{\alpha}$  for some  $\alpha \geq 2$  is computable, then fix two mutually generic  $a, b \in \mathcal{M}_{\alpha}$ .

Now  $R^{\mathcal{M}_{\alpha}}$  has rank 2 iff  $\mathcal{M}_{\alpha} \models R(a,b)$ , so in that case we (effectively in R) replace R by  $\neg R$  (which is at most rank 1).

Ternary  $\mathcal{L}$ : If  $\mathcal{M}_{\alpha}$  for some  $\alpha \geq 3$  is computable, then fix three mutually generic  $a,b,c\in\mathcal{M}_{\alpha}$ .

First reduce to rank at most 2 as in the binary case. Then  $\mathcal{M}_{\alpha} \models \exists^{\infty} w \ R(w,y,z)$  iff at least two of  $\mathcal{M}_{\alpha} \models R(a,y,z)$ ,  $\mathcal{M}_{\alpha} \models R(b,y,z)$ , and  $\mathcal{M}_{\alpha} \models R(c,y,z)$  hold, so this is computable (as are  $\exists^{\infty} w \ R(x,w,z)$ ,  $\exists^{\infty} w \ R(x,y,w)$ ).

Binary  $\mathcal{L}$ : If  $\mathcal{M}_{\alpha}$  for some  $\alpha \geq 2$  is computable, then fix two mutually generic  $a,b \in M_{\alpha}$ .

Now  $R^{\mathcal{M}_{\alpha}}$  has rank 2 iff  $\mathcal{M}_{\alpha} \models R(a,b)$ , so in that case we (effectively in R) replace R by  $\neg R$  (which is at most rank 1).

Ternary  $\mathcal{L}$ : If  $\mathcal{M}_{\alpha}$  for some  $\alpha \geq 3$  is computable, then fix three mutually generic  $a,b,c\in\mathcal{M}_{\alpha}$ .

First reduce to rank at most 2 as in the binary case. Then  $\mathcal{M}_{\alpha} \models \exists^{\infty} w \ R(w,y,z)$  iff at least two of  $\mathcal{M}_{\alpha} \models R(a,y,z)$ ,  $\mathcal{M}_{\alpha} \models R(b,y,z)$ , and  $\mathcal{M}_{\alpha} \models R(c,y,z)$  hold, so this is computable (as are  $\exists^{\infty} w \ R(x,w,z)$ ,  $\exists^{\infty} w \ R(x,y,w)$ ). Now all of  $\exists^{\infty} w \ R(w,y,z)$ ,  $\exists^{\infty} w \ R(x,w,z)$ ,  $\exists^{\infty} w \ R(x,y,w)$ ,  $R(x,y,z) \setminus [\exists^{\infty} w \ R(w,y,z) \vee \exists^{\infty} w \ R(x,w,z) \vee \exists^{\infty} w \ R(x,y,w)] \setminus [x,y,z)$  have rank at most 1 and are effectively interdefinable with R(x,y,z).

Reducing to Rank 1 Complexity of  $acl(\emptyset)$  and iacl(a) "Down" and "Up" Lemmas Wrapping Up

Step 2: Going "down", easy case:

# Step 2: Going "down", easy case:

For a basis B of a strongly minimal disintegrated model  $\mathcal{M}_{\alpha}$ , we have

$$M_{\alpha} = \operatorname{acl}(\emptyset) \sqcup \bigsqcup_{b \in B} \operatorname{iacl}(b)$$

where all iacl(b) are pairwise isomorphic.

Reducing to Rank 1 Complexity of  $acl(\emptyset)$  and iacl(a) "Down" and "Up" Lemmas Wrapping Up

# Step 2: Going "down", easy case:

For a basis B of a strongly minimal disintegrated model  $\mathcal{M}_{\alpha}$ , we have

$$M_{\alpha} = \operatorname{acl}(\emptyset) \sqcup \bigsqcup_{b \in B} \operatorname{iacl}(b)$$

where all iacl(b) are pairwise isomorphic.

## Suppose

- $\mathcal{M}_{\beta} \subset \mathcal{M}_{\alpha}$  for  $\beta < \alpha \leq \omega$ ,
- $\mathcal{M}_{\alpha}$  is a computable model,
- $M_{\beta}$  is a  $\Delta_2^0$ -subset of  $M_{\alpha}$ , and
- $M_{\beta}$  contains an infinite  $\Sigma_1^0$ -subset S.

Then  $\mathcal{M}_{\beta}$  has a computable copy:

Reducing to Rank 1 Complexity of  $acl(\emptyset)$  and iacl(a) "Down" and "Up" Lemmas Wrapping Up

# Step 2: Going "down", easy case:

For a basis B of a strongly minimal disintegrated model  $\mathcal{M}_{\alpha}$ , we have

$$M_{\alpha} = \operatorname{acl}(\emptyset) \sqcup \bigsqcup_{b \in B} \operatorname{iacl}(b)$$

where all iacl(b) are pairwise isomorphic.

## Suppose

- $\mathcal{M}_{\beta} \subset \mathcal{M}_{\alpha}$  for  $\beta < \alpha \leq \omega$ ,
- $\mathcal{M}_{\alpha}$  is a computable model,
- $M_{\beta}$  is a  $\Delta_2^0$ -subset of  $M_{\alpha}$ , and
- $M_{\beta}$  contains an infinite  $\Sigma_1^0$ -subset S.

Then  $\mathcal{M}_{\beta}$  has a computable copy:

Let  $\dim(\mathcal{M}_{\beta}) = k + \beta$ , fix  $k + \beta$  many mutually generics  $\overline{a}$  in  $M_{\alpha}$  and construct  $\operatorname{acl}(\overline{a})$ , "discarding mistakes" into S.

Reducing to Rank 1
Complexity of acl(0) and iacl(a)
"Down" and "Up" Lemmas
Wrapping Up

**Step 3:** Complexity of  $acl(\emptyset)$  and iacl(a):

**Step 3:** Complexity of  $acl(\emptyset)$  and iacl(a):

If all relations in  $\mathcal{M}_{\alpha}$  are at most rank 1, then both  $\operatorname{acl}(\emptyset)$  and  $\operatorname{iacl}(a)$  (for every generic  $a \in M_{\alpha}$ ) are  $\Sigma_2^0$ -subsets of  $M_{\alpha}$  (nonuniformly in a); so they are  $\Delta_2^0$ -subsets if  $\alpha < \omega$ .

Reducing to Rank 1 Complexity of  $acl(\emptyset)$  and iacl(a) "Down" and "Up" Lemmas Wrapping Up

# **Step 3:** Complexity of $acl(\emptyset)$ and iacl(a):

If all relations in  $\mathcal{M}_{\alpha}$  are at most rank 1, then both  $\operatorname{acl}(\emptyset)$  and  $\operatorname{iacl}(a)$  (for every generic  $a \in M_{\alpha}$ ) are  $\Sigma^0_2$ -subsets of  $M_{\alpha}$  (nonuniformly in a); so they are  $\Delta^0_2$ -subsets if  $\alpha < \omega$ .

#### Proof:

Define the *n*-neighborhood  $Nbh_n(a)$  of  $a \in M_\alpha$  by recursion:

$$\mathsf{Nbh}_0(a) = \{a\}$$

$$\mathsf{Nbh}_{n+1}(a) = \{b \in M_\alpha \mid \exists c \in \mathsf{Nbh}_n(a) [c, b \text{ "directly connected"}] \}$$

where c and b are "directly connected" if the binary projection of an m-ary relation  $R \in \mathcal{L}$  holds (or fails) between c and b but not between c and cofinitely many elements of  $M_{\alpha}$ , nor between b and cofinitely many elements of  $M_{\alpha}$ .

Reducing to Rank 1 Complexity of  $acl(\emptyset)$  and iacl(a)"Down" and "Up" Lemmas Wrapping Up

# **Step 3:** Complexity of $acl(\emptyset)$ and iacl(a):

If all relations in  $\mathcal{M}_{\alpha}$  are at most rank 1, then both  $\operatorname{acl}(\emptyset)$  and  $\operatorname{iacl}(a)$  (for every generic  $a \in M_{\alpha}$ ) are  $\Sigma_2^0$ -subsets of  $M_{\alpha}$  (nonuniformly in a); so they are  $\Delta_2^0$ -subsets if  $\alpha < \omega$ .

#### Proof:

Define the *n*-neighborhood  $Nbh_n(a)$  of  $a \in M_\alpha$  by recursion:

$$\mathsf{Nbh}_0(a) = \{a\}$$

$$\mathsf{Nbh}_{n+1}(a) = \{b \in M_\alpha \mid \exists c \in \mathsf{Nbh}_n(a) [c, b \text{ "directly connected"}] \}$$

where c and b are "directly connected" if the binary projection of an m-ary relation  $R \in \mathcal{L}$  holds (or fails) between c and b but not between c and cofinitely many elements of  $M_{\alpha}$ , nor between b and cofinitely many elements of  $M_{\alpha}$ .

Then  $\mathbf{0}'$  can compute canonical indices for  $Nbh_n(a)$  (uniformly in n but *non*uniformly in a).

Reducing to Rank 1 Complexity of  $acl(\emptyset)$  and  $iacl(\emptyset)$ "Down" and "Up" Lemmas Wrapping Up

**Step 4:** "Down": If all relations in  $\mathcal{M}_{\alpha} \models T$  are at most rank 1 and  $k \in \mathsf{SCM}(T) \cap [2, \omega)$ , then  $k - 1 \in \mathsf{SCM}(T)$ :

Reducing to Rank 1 Complexity of  $\operatorname{acl}(\emptyset)$  and  $\operatorname{iacl}(\emptyset)$ "Down" and "Up" Lemmas Wrapping Up

**Step 4:** "Down": If all relations in  $\mathcal{M}_{\alpha} \models T$  are at most rank 1 and  $k \in \mathsf{SCM}(T) \cap [2, \omega)$ , then  $k - 1 \in \mathsf{SCM}(T)$ :

Assume  $\mathcal L$  is "closed under permutation of variables". Define the set of "bad elements"

$$B = \{b \in M_k \mid \exists i \,\exists^{\infty} y \,\exists \overline{z} \, R_i(b, y, \overline{z})\}$$

Reducing to Rank 1 Complexity of  $acl(\emptyset)$  and iacl(a) "Down" and "Up" Lemmas Wrapping Up

**Step 4:** "Down": If all relations in  $\mathcal{M}_{\alpha} \models T$  are at most rank 1 and  $k \in \mathsf{SCM}(T) \cap [2, \omega)$ , then  $k - 1 \in \mathsf{SCM}(T)$ :

Assume  $\mathcal L$  is "closed under permutation of variables". Define the set of "bad elements"

$$B = \{b \in M_k \mid \exists i \,\exists^{\infty} y \,\exists \overline{z} \, R_i(b, y, \overline{z})\}$$

Case I: B is finite: Then for any generic  $a \in M_k$ , iacl(a) is a  $\Sigma_1^0$ -subset of  $M_k$  (finite or infinite).

**Step 4:** "Down": If all relations in  $\mathcal{M}_{\alpha} \models T$  are at most rank 1 and  $k \in \mathsf{SCM}(T) \cap [2, \omega)$ , then  $k - 1 \in \mathsf{SCM}(T)$ :

Assume  $\ensuremath{\mathcal{L}}$  is "closed under permutation of variables". Define the set of "bad elements"

$$B = \{ b \in M_k \mid \exists i \,\exists^{\infty} y \,\exists \overline{z} \, R_i(b, y, \overline{z}) \}$$

Case I: B is finite: Then for any generic  $a \in M_k$ , iacl(a) is a  $\Sigma_1^0$ -subset of  $M_k$  (finite or infinite).

Case II: B is infinite: Then  $\operatorname{acl}(\emptyset)$  contains an infinite  $\Sigma^0_1$ -subset B in  $\mathcal{M}_k$ .

Reducing to Rank 1 Complexity of  $\operatorname{acl}(\emptyset)$  and  $\operatorname{iacl}(\cdot)$  "Down" and "Up" Lemmas Wrapping Up

**Step 4:** "Down": If all relations in  $\mathcal{M}_{\alpha} \models T$  are at most rank 1 and  $k \in \mathsf{SCM}(T) \cap [2, \omega)$ , then  $k - 1 \in \mathsf{SCM}(T)$ :

Assume  $\mathcal L$  is "closed under permutation of variables". Define the set of "bad elements"

$$B = \{b \in M_k \mid \exists i \,\exists^{\infty} y \,\exists \overline{z} \, R_i(b, y, \overline{z})\}$$

Case I: B is finite: Then for any generic  $a \in M_k$ , iacl(a) is a  $\Sigma_1^0$ -subset of  $M_k$  (finite or infinite).

Case II: B is infinite: Then  $\operatorname{acl}(\emptyset)$  contains an infinite  $\Sigma^0_1$ -subset B in  $\mathcal{M}_k$ .

In either case, we can apply the previous steps to see that  $\mathcal{M}_{k-1}$  is computable.

Reducing to Rank 1 Complexity of  $\operatorname{acl}(\emptyset)$  and  $\operatorname{iacl}(z)$  "Down" and "Up" Lemmas Wrapping Up

**Step 5:** "Up": If all relations in  $\mathcal{M}_{\alpha} \models T$  are at most rank 1 and of bounded arity, and if  $k \in SCM(T) \cap [2, \omega)$ , then  $k+1 \in SCM(T)$  (uniformly in k; so  $\omega \in SCM(T)$  as well):

**Step 5:** "Up": If all relations in  $\mathcal{M}_{\alpha} \models T$  are at most rank 1 and of bounded arity, and if  $k \in \mathsf{SCM}(T) \cap [2, \omega)$ , then  $k+1 \in \mathsf{SCM}(T)$  (uniformly in k; so  $\omega \in \mathsf{SCM}(T)$  as well):

Again, assume  $\mathcal{L}$  is "closed under permutation of variables".

Case I: For generic  $a \in M_k$ , there are infinitely many disjoint tuples  $\overline{b}$  in  $M_k$  such that

$$\mathcal{M}_k \models \exists i \left( R_i(a, \overline{b}) \land \exists^{<\infty} x \, R_i(x, \overline{b}) \right)$$

Reducing to Rank 1 Complexity of  $\operatorname{acl}(\emptyset)$  and  $\operatorname{iacl}(a)$  "Down" and "Up" Lemmas Wrapping Up

**Step 5:** "Up": If all relations in  $\mathcal{M}_{\alpha} \models T$  are at most rank 1 and of bounded arity, and if  $k \in \mathsf{SCM}(T) \cap [2, \omega)$ , then  $k+1 \in \mathsf{SCM}(T)$  (uniformly in k; so  $\omega \in \mathsf{SCM}(T)$  as well):

Again, assume  $\mathcal{L}$  is "closed under permutation of variables".

Case I: For generic  $a \in M_k$ , there are infinitely many disjoint tuples  $\overline{b}$  in  $M_k$  such that

$$\mathcal{M}_k \models \exists i \left( R_i(a, \overline{b}) \land \exists^{<\infty} x \, R_i(x, \overline{b}) \right)$$

Then we can generate a  $\Sigma_1^0$ -set of such disjoint tuples and then construct  $\mathcal{M}_{k+1}$  as  $\mathcal{M}_k \sqcup \mathrm{iacl}(g)$  for a new generic element g.

Reducing to Rank 1 Complexity of  $\operatorname{acl}(\emptyset)$  and  $\operatorname{iacl}(a)$  "Down" and "Up" Lemmas Wrapping Up

**Step 5:** "Up": If all relations in  $\mathcal{M}_{\alpha} \models T$  are at most rank 1 and of bounded arity, and if  $k \in \mathsf{SCM}(T) \cap [2, \omega)$ , then  $k+1 \in \mathsf{SCM}(T)$  (uniformly in k; so  $\omega \in \mathsf{SCM}(T)$  as well):

Again, assume  $\mathcal{L}$  is "closed under permutation of variables".

Case I: For generic  $a \in M_k$ , there are infinitely many disjoint tuples  $\overline{b}$  in  $M_k$  such that

$$\mathcal{M}_k \models \exists i \left( R_i(a, \overline{b}) \land \exists^{<\infty} x \, R_i(x, \overline{b}) \right)$$

Then we can generate a  $\Sigma_1^0$ -set of such disjoint tuples and then construct  $\mathcal{M}_{k+1}$  as  $\mathcal{M}_k \sqcup \mathrm{iacl}(g)$  for a new generic element g.

Case II: Otherwise there is a finite set  $\{h_0, \ldots, h_n\}$  of elements involved in all  $R_i$ :

Reducing to Rank 1 Complexity of  $\operatorname{acl}(\emptyset)$  and  $\operatorname{iacl}(a$  "Down" and "Up" Lemmas Wrapping Up

**Step 5:** "Up": If all relations in  $\mathcal{M}_{\alpha} \models T$  are at most rank 1 and of bounded arity, and if  $k \in \mathsf{SCM}(T) \cap [2, \omega)$ , then  $k+1 \in \mathsf{SCM}(T)$  (uniformly in k; so  $\omega \in \mathsf{SCM}(T)$  as well):

Again, assume  $\mathcal{L}$  is "closed under permutation of variables".

Case I: For generic  $a \in M_k$ , there are infinitely many disjoint tuples  $\overline{b}$  in  $M_k$  such that

$$\mathcal{M}_k \models \exists i \left( R_i(a, \overline{b}) \land \exists^{<\infty} x \, R_i(x, \overline{b}) \right)$$

Then we can generate a  $\Sigma_1^0$ -set of such disjoint tuples and then construct  $\mathcal{M}_{k+1}$  as  $\mathcal{M}_k \sqcup \mathrm{iacl}(g)$  for a new generic element g.

Case II: Otherwise there is a finite set  $\{h_0, \ldots, h_n\}$  of elements involved in all  $R_i$ : We can then generate a new language  $\mathcal{L}'$  of *lower* arity consisting of all  $R_i$  with fixed  $h_j$ , and iterate Case I vs. Case II for  $\mathcal{L}'$ , etc., until we reach Case I or a binary language.

Reducing to Rank 1 Complexity of  $\operatorname{acl}(\emptyset)$  and  $\operatorname{iacl}(a$  "Down" and "Up" Lemmas Wrapping Up

Binary  $\mathcal{L}$ : We also need to show

$$\{0,1\} \cap \mathsf{SCM}(T) \neq \emptyset \text{ and } \omega \in \mathsf{SCM}(T) \implies 2 \in \mathsf{SCM}(T)$$

Binary  $\mathcal{L}$ : We also need to show

$$\{0,1\} \cap \mathsf{SCM}(T) \neq \emptyset \text{ and } \omega \in \mathsf{SCM}(T) \implies 2 \in \mathsf{SCM}(T)$$

Ternary  $\mathcal{L}$ : Can only prove

$$[3,\omega) \cap SCM(T) \neq \emptyset \implies [1,\omega] \subseteq SCM(T)$$

Binary  $\mathcal{L}$ : We also need to show

$$\{0,1\} \cap \mathsf{SCM}(T) \neq \emptyset \text{ and } \omega \in \mathsf{SCM}(T) \implies 2 \in \mathsf{SCM}(T)$$

Ternary  $\mathcal{L}$ : Can only prove

$$[3,\omega)\cap SCM(T)\neq\emptyset \implies [1,\omega]\subseteq SCM(T)$$

Finally: Several priority arguments to establish new spectra.

Thanks!

Thanks!

Raqmet!

Thanks!

Raqmet!

Happy Birthday, Chris!

