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Coding and decoding

There are familiar ways of coding one structure in another, and for
coding members of one class of structures in those of another class.

Sometimes the coding is effective. Assuming this, it is interesting
when decoding is also effective. It is also interesting when
decoding is difficult.

We consider some formal notions that describe coding and
decoding, and we test the notions in some examples.



Conventions

1. Languages are computable.

2. Structures have universe ω.

3. Fixing the language L, we identify an L-structure A with
D(A), and we identify that with a function in 2ω.

4. Classes K are closed under isomorphism.



Borel embeddings

Definition (Friedman-Stanley, 1989). For classes K ,K ′, we say
that K is Borel embeddable in K , and we write K ≤B K ′, if there
is a Borel function Θ : K → K ′ s.t. for A,B ∈ K ,
A ∼= B iff Θ(A) ∼= Θ(B).

Note: A Borel embedding Θ : K → K ′ represents a uniform
explicit method for coding structures from K in structures from K ′.



On top

Theorem. The following classes lie on top under ≤B .

1. undirected graphs (Lavrov, 1963; Nies, 1996; Marker, 2002)

2. fields (Friedman-Stanley, 1989;
R. Miller-Poonen-Schoutens-Shlapentokh, 2018)

3. 2-step nilpotent groups (Mekler, 1981; Mal’tsev, 1949)

4. linear orderings (Friedman-Stanley, 1989)



Turing computable embeddings

Definition (Calvert-Cummins-K-S. Miller (Quinn), 2004). For
classes K ,K ′, we say that K is Turing computably embedded in
K ′, and we write K ≤tc K ′, if there is a Turing operator
Θ : K → K ′ s.t. for all A,B ∈ K , A ∼= B iff Θ(A) ∼= Θ(B).

Note: The notion of Turing computable embedding captures in a
precise way the idea of uniform effective coding.



On top

Theorem. The following classes lie on top under ≤tc .

1. undirected graphs

2. fields

3. 2-step nilpotent groups

4. linear orderings

Proof: The Borel embeddings of Friedman-Stanley,
Miller-Poonen-Schoutens-Shlapentokh, Lavrov, Nies, Marker,
Mekler, and Mal’tsev are, in fact, Turing computable.



Marker’s embedding

For a directed graph A, the undirected graph M(A) consists of:

1. a point ba with a triangle attached, for each a ∈ A,

2. a point p(a,a′) for each ordered pair (a, a′) from A, where
p(a,a′) is connected to ba directly, and to ba′ with one stop,

3. further elements for each pair (a, a′) that, together with
p(a,a′), form {

a square if a→ a′

a pentagon otherwise

Remark. For structures A with more relations, the same idea
works.



Effective decoding

Definition. We say that A is Medvedev reducible to B, and we
write A ≤s B if there is a Turing operator that takes copies of B to
copies of A.

If A is coded in B, then a Medvedev reduction of A to B
represents an effective decoding procedure.

For classes K and K ′, suppose that K ≤tc K ′ via Θ. A uniform
effective decoding procedure is a Turing operator Φ s.t. for all
A ∈ K , A ≤s Θ(A) via Φ.



Decoding via nice defining formulas

Fact: For Marker’s embedding M, we have finitary existential
formulas that, for all directed graphs A, define the following.

1. the set D of ba connected to a triangle,

2. the set of ordered pairs (ba, ba′) s.t. the special point p(a,a′) is
part of a square,

3. the set of ordered pairs (ba, ba′) s.t. the special point p(a,a′) is
part of a pentagon,

This guarantees a uniform effective procedure that, given any copy
of Θ(A), computes a copy of A. We have uniform effective
decoding.



Effective interpretation

Harrison-Trainor, Melnikov, R. Miller, and Montalbán defined a
very general kind of interpretation that guarantees effective
decoding.

Definition. A structure A = (A,Ri ) is effectively interpreted in a
structure B if there exist a set D ⊆ B<ω, and relations ∼ and R∗i
on D, s.t.

1. (D,R∗i )/∼ ∼= A,

2. D, ± ∼, and ±R∗i are all defined by computable Σ1 formulas
with no parameters. (In case the language of A is infinite, the
definitions of ±R∗i are effectively determined.)



Computable functor

Definition. A computable functor from B to A is a pair of Turing
operators Φ,Ψ s.t.

1. Φ takes copies of B to copies of A,

2. Ψ takes isomorphisms between copies of B to isomorphisms
between the corresponding copies of A, so as to preserve
identity and composition.

More precisely, Ψ is defined on triples (B1, f ,B2), where B1,B2 are
copies of B with B1

∼=f B2.



Equivalence

Theorem (H-TMMM, 2017). A is effectively interpreted in B iff
there is a computable functor from B to A.

Note: In the proof, it is important that D consist of tuples of
arbitrary arity.



Disturbing example

Proposition. If A is computable, then it is effectively interpreted
in all structures B.

Proof: Let D = B<ω. Let b̄ ∼ c̄ if b̄, c̄ are tuples of the same
length. For simplicity, suppose A = (ω,R), where R is binary. If
A |= R(m, n), then R∗(b̄, c̄) for all b̄ of length m and c̄ of length n.



Natural questions, answered by Kalimullin

Questions.

1. If A ≤s B, must A be effectively interpreted in B?

2. If A is effectively interpreted in (B, b̄), is it effectively
interpreted in B?

Proposition (Kalimullin, 2010). The answer to both questions is
“No.”



Mal’tsev embedding of fields in groups

For a field F , let H(F ) be the Heisenberg group, consisting of the
matrices over F of form  1 a c

0 1 b
0 0 1



Theorem (Mal’tsev). There is a copy of F defined in H(F ) with
parameters.



Definition of F in H(F )

Let u, v be a non-commuting pair in H(F ). Then (D,+, ·(u,v)) is a
copy of F , where

1. D is the group center—x ∈ D iff [x , u] = 1 and [x , v ] = 1,

2. x + y = z if x ∗ y = z , where ∗ is the group operation,

3. x ·(u,v) y = z if there exist x ′, y ′ s.t.

[x ′, u] = [y ′, v ] = 1, [x ′, v ] = x , [u, y ′] = y , and [x ′, y ′] = z .



Uniform effective decoding

Definability: There are finitary existential formulas, with no
parameters, that define D and the relation + and its complement,
and there are finitary existential formulas, with an arbitrary
non-commuting pair (u, v) as parameters, that define the relation ·
and its complement.

Corollary (Morozov). There is a uniform Turing operator Φ such
that for all fields F , F ≤s H(F ) via Φ.

Proof We search for a non-commuting pair (u, v) in H(F ), and
then use Mal’tsev’s definitions to compute a copy of F .



Half of computable functor

The Turing operator Φ is one half of a computable functor from
H(F ) to F .

Question. Is F effectively interpreted in H(F )—by formulas
without parameters?

The answer is “Yes.”



Natural isomorphism from F to copy defined in H(F )

We write h(a, b, c) for the matrix 1 a c
0 1 b
0 0 1


For a non-commuting pair (u, v), where u = h(u1, u2, u3) and
v = h(v1, v2, v3), let

∆(u,v) =

∣∣∣∣ u1 u2

v1 v2

∣∣∣∣
Morozov. The function x → h(0, 0, x ·F ∆(u,v)) is an isomorphism
from F to F(u,v).



Definable isomorphisms

Lemma (Morozov). Let (u, v) and (u′, v ′) be non-commuting
pairs in G ∼= H(F ). Let F(u,v) and F(u′,v ′) be the copies of F
defined in G with these pairs of parameters. There is an
isomorphism g(u,v),(u′v ′) from F(u,v) onto F(u′,v ′), defined in G by
an existential formula with parameters u, v , u′, v ′.

Proof. Note that h(0, 0,∆(u,v)) = 1(u,v), the multiplicative
identity in F(u,v). Let g(u,v),(u′,v ′)(x) = y iff x = 1(u,v) ·(u′,v ′) y .
ϕ(x) saying that



Computable functor

Morozov. There is a computable functor Φ,Ψ from H(F ) to F .

Φ: For G ∼= H(F ), Φ(G )) is the copy of F obtained by taking the
first non-commuting pair (u, v) in G and forming (D,+, ·(u,v)).

Ψ: Take (G1, f ,G2), where Gi
∼= H(F ), and G1

∼=f G2. Let (u, v),
(u′, v ′) be the first non-commuting pairs in G1, G2, respectively.
Let F((u′,v ′) and F(f (u),f (v)) be the copies of F defined in G2 using
the parameters (u′, v ′) and (f (u), f (v)), respectively. Let h be the
isomorphism from F(f (u),f (v)) onto F(u′,v ′) defined in G2 with
parameters f (u), f (v), u′, v ′. Let f ′ be the restriction of f to the
center of G1. Then Ψ(G1, f ,G2) = h ◦ f ′.

Corollary (Alvir-Calvert-Harizanov-K-Miller-Morozov-
Soskova-Weisshaar). F is effectively interpreted in
H(F ).



Finding an interpretation directly

Proposition (Goodman-K-Miller). The following is an effective
interpretation.

1. D is the set of (u, v , x) s.t. [u, v ] 6= 1 and [x , u] = [x , v ] = 1.

2. (u, v , x) ∼ (u′, v ′, x ′) holds if Morozov’s isomorphism from
F(u,v) to F(u′,v ′) takes x to x ′.

3. +∗((u, v , x), (u′, v ′, y), (u′′, v ′′, z)) holds if there exist y ′, z ′

s.t. (u, v , y ′) ∼ (u′, v ′, y), (u, v , z ′) ∼ (u′′, v ′′, z), and
x ∗ y ′ = z ′.

4. ·∗((u, v , x), (u′, v ′, y), (u′′, v ′′, z)) holds if there exist y ′, z ′ s.t.
(u, v , y ′) ∼ (u′, v ′, y), (u, v , z ′) ∼ (u′′, v ′′, z), and
x ·(u,v) y

′ = z ′.



Generalizing

Proposition. Suppose A is defined in B by computable Σ1

formulas with parameters b̄. For c̄ in the orbit of b̄, let Ac̄ be the
copy of A defined with parameters c̄ replacing b̄. The following
conditions suffice for an effective interpretation of A in B:

1. The orbit of b̄ in B is defined by a computable Σ1 formula
ϕ(x̄).

2. There is a computable Σ1 formula ψ(ū, v̄ , x , y) s.t. for any
c̄ , d̄ in the orbit of b̄, defines an isomorphism fc̄,d̄ from Ac̄

onto Ad̄ .

3. The family of isomorphisms fc̄,d̄ preserves identity and
composition.



Trivial example

Let A be a non-c.e. set that contains 0. Let S be the family of all
finite sets that do not contain 0. Let A = G∞A , let B = G∞S∪{A},
and let C = G∞S . The daisies in these graphs are directed, so that
all elements of a given daisy are existential defined in terms of the
center. Let b be an element of B that is the center of a copy of GA.

1. There is a copy of A defined in (B, b) by computable
Σ1-formulas—we use tuples of different arity to produce
different copies of SA.

2. There are further computable Σ1 formulas ϕ(u) and
ψ(u, v , x , y) satisfying the conditions of the previous result.

3. Hence, A is effectively interpreted in B.



A possible non-example

Consider countable algebraically closed fields C of characteristic 0,
SL2(C ). We can define C in SL2(C ) using existential formulas

with parameters p =

[
1 1
0 1

]
and q =

[
2 0
0 1

2

]
.

There are old model theoretic results that give definability without
parameters—by elementary first order formulas of some complexity.
This isn’t good enough.



Interpretations by more complicated formulas

Harrison-Trainor, Miller, and Montalbán defined Borel versions of
the notion of effective interpretation and computable functor.

1. For a Borel interpretation of A in B, the set D ⊆ B<ω, and
the relations Ri and ∼ on D are defined by formulas of Lω1ω.

2. For a Borel functor from B to A, the operators Φ,Ψ are Borel.

Theorem (H-TMM). There is a Borel interpretation of A in B iff
there is a Borel functor from B to A.



Embedding of (directed) graphs in orderings

Friedman and Stanley determined a Turing computable embedding
L : G → L(G ), where L(G ) is a sub-ordering of Q<ω under the
lexicographic ordering. To specify the elements of L(G ), we need
some preliminaries.

1. Let (An)n∈ω be an effective partition of Q into disjoint dense
sets.

2. Let (tn)n∈ω be a computable list of the atomic types in the
language of graphs.

Definition of L(G). For a (directed) graph G , L(G ) is the set of
tuples r0q1r1 . . . rn−1qnrnk ∈ Q<ω s.t. for i < n, ri ∈ A0, rn ∈ A1,
and for some a1, . . . , an ∈ G , satisfying tm, qi ∈ Aai and k < m.



Graphs and linear orderings

Graphs and linear orderings both lie on top under Turing
computable embeddings.

Graphs also lie on top under effective interpretation.

Question: What about linear orderings?



Graph not Medvedev reducible to an ordering

Proposition (K-Soskova-Vatev). There is a graph G s.t. G 6≤s L
for any linear ordering L.

Proposition (K-Soskova-Vatev). There is a graph G s.t.
G 6≤s L

′ for any linear ordering L.



This pattern stops

Proposition. For any graph G , any fixed copy G0, there is a linear
ordering L s.t. the ∃3 theory of L computes G0. It follows that G is
effectively interpreted in L′′, and it is interpreted in L using
computable Σ3 formulas.



No uniform interpretation of G in L(G )

Theorem (K-Soskova-Vatev, Harrison-Trainor-Montalbán).
There are not Lω1ω-formulas that, for all graphs G , interpret G
in L(G ).

Outline of proof by K-Soskova-Vatev: We think of an ordering
as a directed graph. We show the following.

Proposition.

A. ωCK
1 is not interpreted in L(ωCK

1 ) using computable infinitary
formulas.

B. For all X , ωX
1 is not interpreted in L(ωX

1 ) using X -computable
infinitary formulas.



Problems

1. For the Friedman-Stanley embedding of graphs in linear
orderings, how difficult is it to recover G from L(G )?

2. Is there some other Turing computable embedding Θ of
graphs in orderings, for which there are Lω1ω formulas that,
for all graphs G , define an interpretation of G in Θ(G )?


